Research Summary: Statistical Algorithms for Complex Data

Junhyoung Chung

Department of Statistics, Seoul National University

Research 001: Operator Fused Optimal Transport

Research question: Is it possible to design a fused transport framework that is simultaneously (i) **convex** and computationally tractable, (ii) sensitive to **feature information**, and (iii) capable of preserving the intrinsic **geometric** structure of the domains?

Contributions

- Convex objective design. Develop a new loss function (1) formulated as a convex objective, guaranteeing efficient and globally optimal solutions.
- **Graph-to-Metric space extension.** Extend the convex relaxation techniques of graph matching problems to the operator level, thereby generalizing the problem from aligning two graphs to aligning two **metric spaces**.
- Scalable solver with guarantees. Use a projection-free Frank–Wolfe algorithm for the empirical convex quadratic program, and derive an optimization-statistical error bound.

Convex Structural Penalty

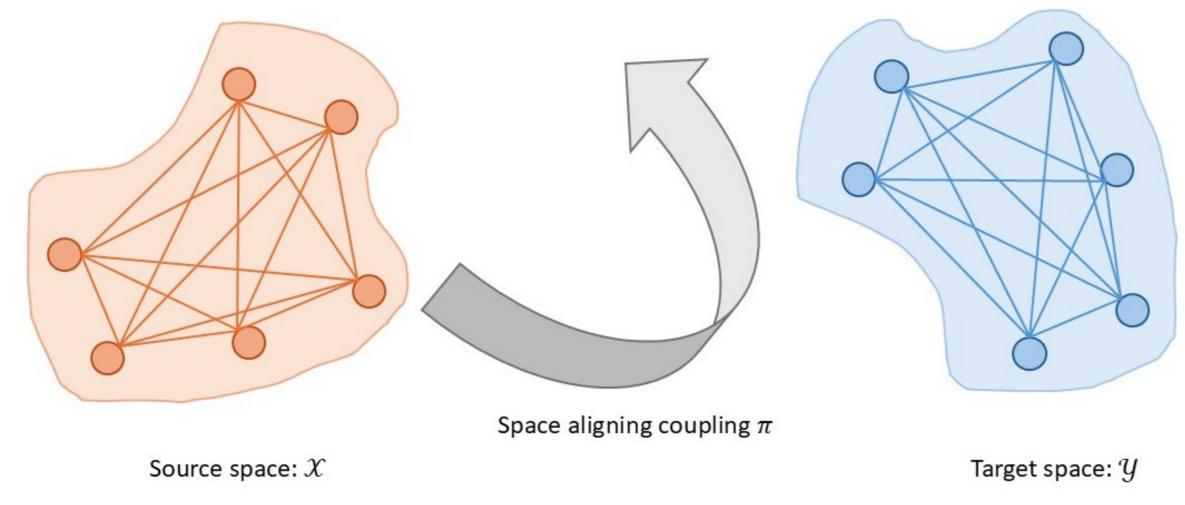


Figure: A coupling π that aligns two spaces ${\mathcal X}$ and ${\mathcal Y}$

- Let $(\mathcal{X}, d_{\mathcal{X}}, \mathbb{P}_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \mathbb{P}_{\mathcal{Y}})$ be connected and compact metric measure spaces.
- The Gromov–Wasserstein (GW) discrepancy is powerful for matching problems between heterogeneous spaces:

$$\pi^* = rg \min_{\pi \in \Pi(\mathbb{P}_X, \mathbb{P}_Y)} \mathbb{E}_{\pi \otimes \pi} \Big[| extbf{d}_{\mathcal{X}}(X, X') - extbf{d}_{\mathcal{Y}}(Y, Y')|^2 \Big].$$

• However, the GW loss is highly **non-convex** with respect to π .

Motivation: Convex Relaxation in Graph Matching

- Let A_X and A_Y be the adjacency matrices of G_X and G_Y , respectively. The standard graph matching problem of finding a permutation matrix P such that $A_X \approx PA_YP^{\top}$ can be written as minimizing $\|A_X PA_YP^{\top}\|_F^2$, which is equivalent to $\|A_XP PA_Y\|_F^2$.
- Relaxing P to a soft assignment matrix Π in the Birkhoff polytope then yields the convex quadratic program $\min_{\pi} ||A_X\Pi \Pi A_Y||_F^2$.
- We lift this idea from the graph domain to the **operator level alignment** for general metric spaces.

Our Penalty: $||D_{\mathbb{P}_X}T_{\pi} - T_{\pi}D_{\mathbb{P}_Y}||_{\mathrm{HS}}^2$.

- $D_{\mathbb{P}_X}$ (Distance operator):
- This operator encodes the distance information within the metric space $(\mathcal{X}, d_{\mathcal{X}})$, analogous to the adjacency matrix $(A_{\mathcal{X}})$ in graph matching.
- T_{π} (Alignment operator):
- ▶ This operator represents the **soft assignment** or alignment between the two spaces, generalizing the permutation matrix (P) or soft assignment matrix (Π).
- ▶ Definition: $(T_{\pi}g)(x) = \mathbb{E}_{\pi}[g(Y) \mid X = x].$

Main Results

Theorem 1 (Convexity). For $0 \le \alpha \le 1$, the following is a convex optimization problem:

$$\inf_{\pi \in \Pi(\mathbb{P}_{X}, \mathbb{P}_{Y})} \underbrace{(1 - \alpha)\mathbb{E}_{\pi} \left[\|f_{\mathcal{X}}(X) - f_{\mathcal{Y}}(Y)\|_{2}^{2} \right] + \frac{\alpha}{2} \|D_{\mathbb{P}_{X}}^{\kappa} T_{\pi} - T_{\pi} D_{\mathbb{P}_{Y}}^{\kappa}\|_{HS}^{2}}_{=\mathcal{L}(\pi)}. \tag{1}$$

• We additionally introduce an feature space $M \subset \mathbb{R}^k$, into which the source $X \sim \mathbb{P}_X$ and target $Y \sim \mathbb{P}_Y$ are mapped via continuous feature functions $f_{\mathcal{X}} : \mathcal{X} \to M$ and $f_{\mathcal{Y}} : \mathcal{Y} \to M$.

Proposition 1 (Isometry consistency). Let $T: \mathcal{X} \to \mathcal{Y}$ be a bijective measurable map, and consider $\pi = (\mathrm{Id}, T)_{\#} \mathbb{P}_{X}$. Then,

$$\|D_{\mathbb{P}_X}T_{\pi}-T_{\pi}D_{\mathbb{P}_Y}\|_{\mathrm{HS}}^2=0 \iff d_{\mathcal{Y}}(T(x),T(x'))=d_{\mathcal{X}}(x,x') \text{ for } \mathbb{P}_X\otimes \mathbb{P}_X\text{-a.e. } (x,x').$$

- The above proposition shows that the proposed structural penalty favors isometry transport plans, while ensuring convexity.
- More generally, the penalty vanishes iff $D_{\mathbb{P}_X}T_{\pi} = T_{\pi}D_{\mathbb{P}_Y}$, that is, if φ is an eigenfunction of $D_{\mathbb{P}_Y}$ with eigenvalue λ , then

$$D_{\mathbb{P}_X}(T_{\pi}\varphi) = T_{\pi}(D_{\mathbb{P}_Y}\varphi) = \lambda T_{\pi}\varphi,$$

forcing an alignment of their geometric eigenstructures.

Theorem 2 (Consistency). Under regularity conditions, the error of the solution $\hat{\pi}$ from the empirical loss $\mathcal{L}_n(\pi)$ relative to the true optimal loss $\mathcal{L}(\pi)$ is bounded by:

$$\left| \mathcal{L}_{n}(\hat{\pi}) - \inf_{\pi \in \Pi(\mathbb{P}_{X}, \mathbb{P}_{Y})} \mathcal{L}(\pi) \right| \leq \underbrace{\frac{8\alpha \, n}{\underbrace{(T+1)}}}_{\text{Optimization error}} + C \underbrace{\left(W_{2}^{d_{\mathcal{X}}}(\mathbb{P}_{X}, \hat{\mathbb{P}}_{X}) + W_{2}^{d_{\mathcal{Y}}}(\mathbb{P}_{Y}, \hat{\mathbb{P}}_{Y})\right)}_{\text{Statistical error}},$$

Research 002: Graphical Models under Data Contamination

Research question: Can we design a robust statistical algorithm to estimate causal structures using graphical models, given that the data often suffers from **measurement errors** and other forms of **contamination** in fields like biology, social science, and environmental science?

Contributions

- **Identifiability.** Propose two complementary sets of conditions that identify true causal graph up to its Markov equivalence class (MEC), even in the presence of data contamination.
- ► Condition 1 (Anchored-frugality): Requires the Gaussian assumption on the true data distribution, but does not require prior knowledge of the contamination process.
- ➤ Condition 2 (Geometry-faithfulness): Is distribution-free, but requires prior knowledge of the contamination process (e.g., the structure or type of noise).
- Consistency. Design consistent MEC learning algorithms.

Anchored Directed Acyclic Graphical (DAG) Models

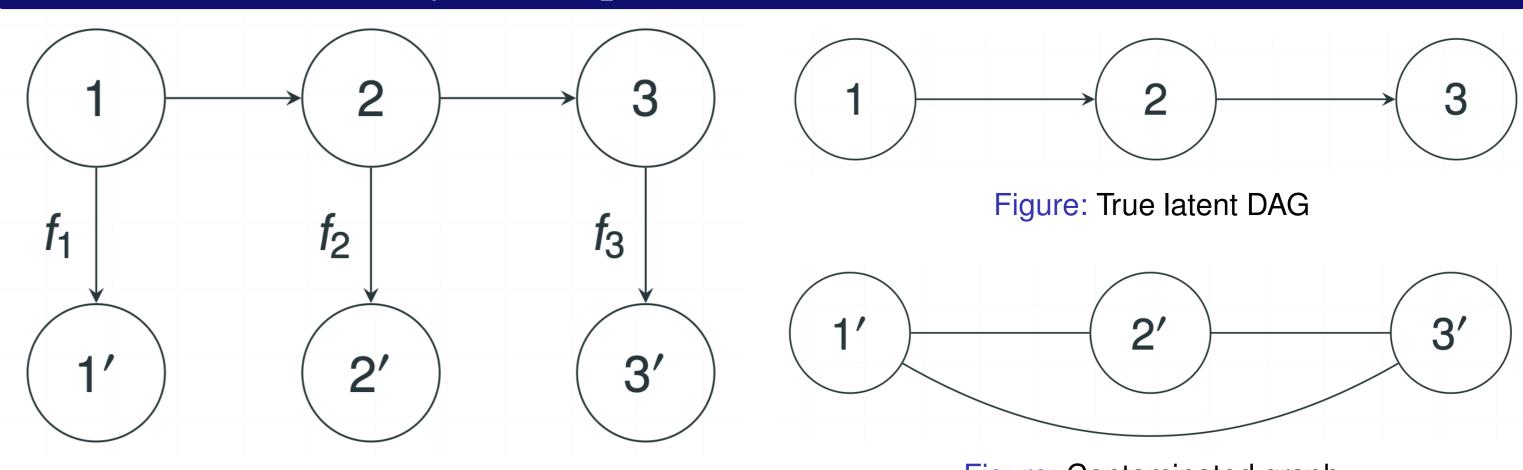


Figure: 3-node anchored DAG

Figure: Contaminated graph

• Let $Z \in \mathbb{R}^d$ be a latent random vector generated by a linear structural equation model (SEM):

$$Z = BZ + E$$
,

where B is the edge weight matrix, and E is a mean zero random vector with finite variance.

- We assume that B is strictly lower-triangular, excluding cyclic relationships within Z.
- In anchored DAG models, we do not observe Z directly, but rather its imperfect realizations, denoted by the observed random vector $X \in \mathbb{R}^d$.
- The relationship is defined element-wise:

$$X_j = f_j(Z_j), \quad \forall j \in \{1, ..., d\},$$

where each f_i can be either deterministic or a stochastic mapping.

- Anchored DAG models encompass a wide range of contamination models:
- ▶ Additive measurement error models. $X_j = Z_j + \Psi_j$ with $\mathbb{E}(\Psi_j) = 0$ and $\mathbb{E}(\Psi_j^2) < \infty$.
- ▶ **Dropout models.** $X_j = \Psi_j Z_j$ with $\Psi_j \sim \text{Bernoulli}(p_j)$.
- ▶ Discretized models. $X_j = \sum_{k=1}^K a_k I(Z_j \in S_k)$, where $S_1, ..., S_K$ form a partition of \mathbb{R} .

Identifiability

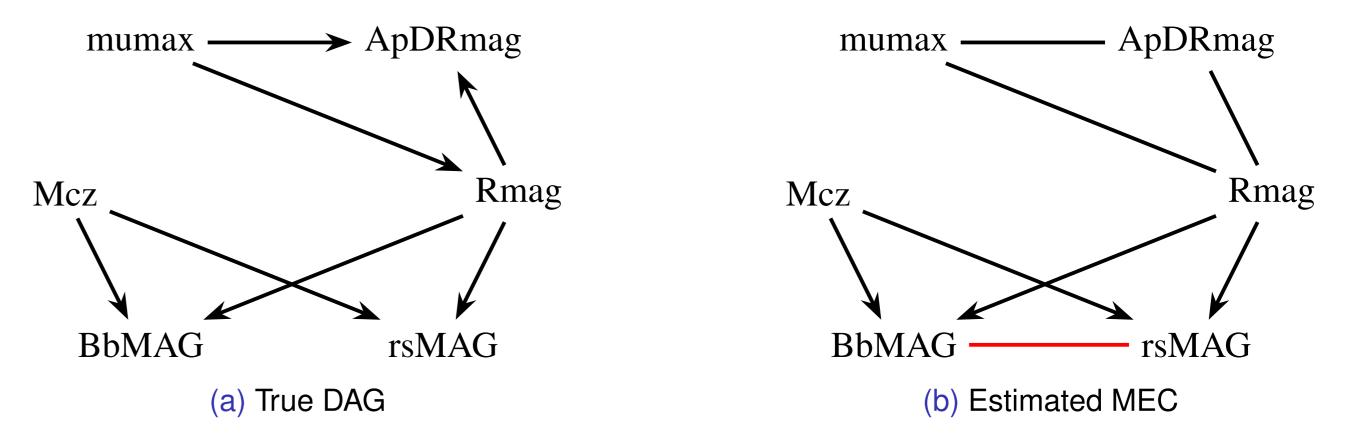
Condition 1 (Anchored-frugality). Let Z be Gaussian, and suppose that X is contaminated by additive measurement errors, such that its covariance matrix is $\Sigma^X = \Sigma^Z + \Sigma^{\Psi}$, where Σ^{Ψ} is diagonal. Among all possible corrections $\Sigma^X - \operatorname{diag}(\eta^2) \in \mathcal{S}^d_{++}$, the graph induced by the resulting covariance matrix Σ^Z exhibits the sparsest structure. Here, \mathcal{S}^d_{++} is the set of $d \times d$ positive definite matrices. Condition 2 (Geometry-faithfulness). Assume that the latent covariance matrix Σ^Z can be recovered from the known moment relationships between X and Z. The geometry-faithfulness requires that the d-separation relationships between nodes perfectly encode the orthogonal relationships among the latent random vector Z, that is,

i and *j* are d-separated by a set $S \iff Z_i - \Sigma_{iS}^Z(\Sigma_{SS}^Z)^{-1}Z_S$ and $Z_j - \Sigma_{iS}^Z(\Sigma_{SS}^Z)^{-1}Z_S$ are uncorrelated.

- Anchored-frugality is deeply aligned with Occam's razor: among all candidate structures obtained after correcting for variability, the simplest one reveals the true relationships.
- Geometry-faithfulness replaces the conditional independence relationships in the standard faithfulness by linear orthogonality.
- Under linear SEMs, both conditions are valid except for a set of Lebesgue measure zero.

Theorem 1 (Identifiability). Under Condition 1 or 2, the latent graph is identifiable up to its MEC.

Real-World Application: Galaxy Brightness Measurements



References

- Chung, J., Ahn, Y., Shin, D., & Park, G. (2025). Learning distribution-free anchored linear structural equation models in the presence of measurement error. *Journal of the Korean Statistical Society*.
- Shin, J., Chung, J., Hwang, S., & Park, G. (2025). Discovering causal structures in corrupted data: frugality in anchored Gaussian DAG models. *Computational Statistics & Data Analysis*.