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Research 001: Operator Fused Optimal Transport
Research question: Is it possible to design a fused transport framework that is simultaneously (i)

convex and computationally tractable, (ii) sensitive to feature information, and (iii) capable of

preserving the intrinsic geometric structure of the domains?

Contributions
• Convex objective design. Develop a new loss function (1) formulated as a convex objective,

guaranteeing efficient and globally optimal solutions.

• Graph-to-Metric space extension. Extend the convex relaxation techniques of graph matching

problems to the operator level, thereby generalizing the problem from aligning two graphs to

aligning two metric spaces.

• Scalable solver with guarantees. Use a projection-free Frank–Wolfe algorithm for the empirical

convex quadratic program, and derive an optimization-statistical error bound.

Convex Structural Penalty

Figure: A coupling π that aligns two spaces X and Y

• Let (X ,dX ,PX) and (Y ,dY,PY ) be connected and compact metric measure spaces.

• The Gromov–Wasserstein (GW) discrepancy is powerful for matching problems between

heterogeneous spaces:

π∗ = argmin
π∈Π(PX ,PY )

Eπ⊗π

[
|dX (X ,X ′)− dY(Y ,Y ′)|2

]
.

• However, the GW loss is highly non-convex with respect to π.

Motivation: Convex Relaxation in Graph Matching
• Let AX and AY be the adjacency matrices of GX and GY , respectively. The standard graph matching

problem of finding a permutation matrix P such that AX ≈ PAYP⊤ can be written as minimizing

∥AX − PAYP⊤∥2
F , which is equivalent to ∥AXP − PAY∥2

F .

• Relaxing P to a soft assignment matrix Π in the Birkhoff polytope then yields the convex quadratic

program minπ ∥AXΠ− ΠAY∥2
F .

• We lift this idea from the graph domain to the operator level alignment for general metric spaces.

Our Penalty: ∥DPXTπ − TπDPY∥2
HS.

• DPX (Distance operator):
▶ This operator encodes the distance information within the metric space (X ,dX ), analogous to the

adjacency matrix (AX ) in graph matching.

▶ Definition: (DPX f )(x) = EPX [dX (x ,X )f (X )].
• Tπ (Alignment operator):
▶ This operator represents the soft assignment or alignment between the two spaces, generalizing

the permutation matrix (P) or soft assignment matrix (Π).

▶ Definition: (Tπg)(x) = Eπ[g(Y ) | X = x ].

Main Results
Theorem 1 (Convexity). For 0 ≤ α ≤ 1, the following is a convex optimization problem:

inf
π∈Π(PX ,PY )

(1 − α)Eπ

[
∥fX (X )− fY(Y )∥2

2
]
+
α

2
∥Dκ

PX
Tπ − TπDκ

PY
∥2

HS︸ ︷︷ ︸
=L(π)

. (1)

• We additionally introduce an feature space M ⊂ Rk , into which the source X ∼ PX and target

Y ∼ PY are mapped via continuous feature functions fX : X → M and fY : Y → M .

Proposition 1 (Isometry consistency). Let T : X → Y be a bijective measurable map, and

consider π = (Id,T )#PX . Then,

∥DPXTπ − TπDPY∥
2
HS = 0 ⇐⇒ dY(T (x),T (x ′)) = dX (x , x ′) for PX ⊗ PX -a.e. (x , x ′).

• The above proposition shows that the proposed structural penalty favors isometry transport plans,

while ensuring convexity.

• More generally, the penalty vanishes iff DPXTπ = TπDPY , that is, if φ is an eigenfunction of DPY

with eigenvalue λ, then

DPX(Tπφ) = Tπ(DPYφ) = λTπφ,

forcing an alignment of their geometric eigenstructures.

Theorem 2 (Consistency). Under regularity conditions, the error of the solution π̂ from the

empirical loss Ln(π) relative to the true optimal loss L(π) is bounded by:∣∣∣∣Ln(π̂)− inf
π∈Π(PX ,PY )

L(π)
∣∣∣∣ ≤ 8α n

(T + 1)︸ ︷︷ ︸
Optimization error

+C
(

W dX
2 (PX , P̂X) + W dY

2 (PY , P̂Y )
)

︸ ︷︷ ︸
Statistical error

,

where T is the number of iterations and W d
2 denotes the 2-Wasserstein distance w.r.t. the metric d .

Research 002: Graphical Models under Data Contamination
Research question: Can we design a robust statistical algorithm to estimate causal structures using

graphical models, given that the data often suffers from measurement errors and other forms of

contamination in fields like biology, social science, and environmental science?

Contributions
• Identifiability. Propose two complementary sets of conditions that identify true causal graph up to

its Markov equivalence class (MEC), even in the presence of data contamination.

▶ Condition 1 (Anchored-frugality): Requires the Gaussian assumption on the true data

distribution, but does not require prior knowledge of the contamination process.

▶ Condition 2 (Geometry-faithfulness): Is distribution-free, but requires prior knowledge of the

contamination process (e.g., the structure or type of noise).

• Consistency. Design consistent MEC learning algorithms.

Anchored Directed Acyclic Graphical (DAG) Models

Figure: 3-node anchored DAG

Figure: True latent DAG

Figure: Contaminated graph

• Let Z ∈ Rd be a latent random vector generated by a linear structural equation model (SEM):

Z = BZ + E ,

where B is the edge weight matrix, and E is a mean zero random vector with finite variance.

• We assume that B is strictly lower-triangular, excluding cyclic relationships within Z .

• In anchored DAG models, we do not observe Z directly, but rather its imperfect realizations,

denoted by the observed random vector X ∈ Rd .

• The relationship is defined element-wise:

Xj = fj(Zj), ∀j ∈ {1, ...,d},

where each fj can be either deterministic or a stochastic mapping.
• Anchored DAG models encompass a wide range of contamination models:

▶ Additive measurement error models. Xj = Zj + Ψj with E(Ψj) = 0 and E(Ψ2
j ) < ∞.

▶ Dropout models. Xj = ΨjZj with Ψj ∼ Bernoulli(pj).

▶ Discretized models. Xj =
∑K

k=1 ak I(Zj ∈ Sk), where S1, ...,SK form a partition of R.

Identifiability
Condition 1 (Anchored-frugality). Let Z be Gaussian, and suppose that X is contaminated by

additive measurement errors, such that its covariance matrix is ΣX = ΣZ + ΣΨ, where ΣΨ is diagonal.

Among all possible corrections ΣX − diag(η2) ∈ Sd
++, the graph induced by the resulting covariance

matrix ΣZ exhibits the sparsest structure. Here, Sd
++ is the set of d × d positive definite matrices.

Condition 2 (Geometry-faithfulness). Assume that the latent covariance matrix ΣZ can be

recovered from the known moment relationships between X and Z . The geometry-faithfulness requires

that the d-separation relationships between nodes perfectly encode the orthogonal relationships among

the latent random vector Z , that is,

i and j are d-separated by a set S ⇐⇒ Zi − ΣZ
iS(Σ

Z
SS)

−1ZS and Zj − ΣZ
jS(Σ

Z
SS)

−1ZS are uncorrelated.

• Anchored-frugality is deeply aligned with Occam’s razor: among all candidate structures obtained

after correcting for variability, the simplest one reveals the true relationships.

• Geometry-faithfulness replaces the conditional independence relationships in the standard

faithfulness by linear orthogonality.

• Under linear SEMs, both conditions are valid except for a set of Lebesgue measure zero.

Theorem 1 (Identifiability). Under Condition 1 or 2, the latent graph is identifiable up to its MEC.

Real-World Application: Galaxy Brightness Measurements
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