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Research 001: Operator Fused Optimal Transport

Research question: Is it possible to design a fused transport framework that 1s simultaneously (1)
convex and computationally tractable, (i1) sensitive to feature information, and (i11) capable of

preserving the intrinsic geometric structure of the domains?

Research 002: Graphical Models under Data Contamination

Research question: Can we design a robust statistical algorithm to estimate causal structures using
graphical models, given that the data often suffers from measurement errors and other forms of

contamination in fields like biology, social science, and environmental science?

Contributions

e Convex objective design. Develop a new loss function (1) formulated as a convex objective,
guaranteeing efficient and globally optimal solutions.

e Graph-to-Metric space extension. Extend the convex relaxation techniques of graph matching
problems to the operator level, thereby generalizing the problem from aligning two graphs to
aligning two metric spaces.

e Scalable solver with guarantees. Use a projection-free Frank—Wolfe algorithm for the empirical

convex quadratic program, and derive an optimization-statistical error bound.

Convex Structural Penalty
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Space aligning coupling

Source space: X Target space: Y

Figure: A coupling 7 that aligns two spaces X and )

o Let (X, dy,Px) and (), dy,Py) be connected and compact metric measure spaces.

e The Gromov—Wasserstein (GW) discrepancy 1s powerful for matching problems between

heterogeneous spaces:

™ = argmin E, o, [’dX(X, X)) —dy(Y, Y’)’Z]

TE H(P x,P y)
e However, the GW loss 1s highly non-convex with respect to 7.
Motivation: Convex Relaxation in Graph Matching
e Let Ax and Ay be the adjacency matrices of Gy and Gy, respectively. The standard graph matching

problem of finding a permutation matrix P such that Ay ~ PAyP' can be written as minimizing
|Ax — PAyP'|

e Relaxing P to a soft assignment matrix [1 in the Birkhoff polytope then yields the convex quadratic

2, which is equivalent to ||AxP — PAy||%.

program min, || AxI — MAy/||2.

e We lift this idea from the graph domain to the operator level alignment for general metric spaces.

Our Penalty: | Dp, T, — T, Dp, ||2s.

e Dp, (Distance operator):
» This operator encodes the distance information within the metric space (X', dy), analogous to the
adjacency matrix (Ay) in graph matching.
» Definition: (Dp, f)(x) = Ep,[dy(x, X)f(X)].
e [, (Alignment operator):
» This operator represents the soft assignment or alignment between the two spaces, generalizing

the permutation matrix (P) or soft assignment matrix ([1).

» Definition: (7,9)(x) = E;[g(Y) | X = X].

Main Results

Theorem 1 (Convexity). For 0 < o < 1, the following is a convex optimization problem:
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e We additionally introduce an feature space M C RX, into which the source X ~ Py and target

Y ~ Py are mapped via continuous feature functions fy : X — Mand fy, : ) — M.

Proposition 1 (Isometry consistency). Let T : X — Y be a bijective measurable map, and
consider m = (Id, T).Px. Then,

|Dp, T, — T:Dp |35 =0 <= dy(T(x), T(x")) = dy(x, X') for Px @ Px-a.e. (X, X').

e The above proposition shows that the proposed structural penalty favors isometry transport plans,

while ensuring convexity.
e More generally, the penalty vanishes iff Dp, T, = T,.Dp,, that is, if ¢ is an eigenfunction of Dp,

with eigenvalue A, then

DPx( Trp) = TW(DIPWSD) = AT,

forcing an alignment of their geometric eigenstructures.

Theorem 2 (Consistency). Under regularity conditions, the error of the solution # from the

empirical loss Lp(7) relative to the true optimal loss £(7) is bounded by:
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Optimization error

Contributions

e Identifiability. Propose two complementary sets of conditions that identify true causal graph up to
its Markov equivalence class (MEC), even 1n the presence of data contamination.

» Condition 1 (Anchored-frugality): Requires the Gaussian assumption on the true data
distribution, but does not require prior knowledge of the contamination process.
» Condition 2 (Geometry-faithfulness): Is distribution-free, but requires prior knowledge of the

contamination process (e.g., the structure or type of noise).

e Consistency. Design consistent MEC learning algorithms.

Anchored Directed Acyclic Graphical (DAG) Models
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Figure: True latent DAG
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Figure: 3-node anchored DAG

Figure: Contaminated graph

e Let Z € RY be a latent random vector generated by a linear structural equation model (SEM):
Z=BZ+E,

where B is the edge weight matrix, and E is a mean zero random vector with finite variance.
e We assume that B is strictly lower-triangular, excluding cyclic relationships within Z.

e In anchored DAG models, we do not observe Z directly, but rather its imperfect realizations,

denoted by the observed random vector X € RY.

e The relationship is defined element-wise:
)(j: I}(Zj)v V] € {17'“70'}7

where each f; can be either deterministic or a stochastic mapping.

e Anchored DAG models encompass a wide range of contamination models:
> Additive measurement error models. X; = Z; + V; with E(V;) = 0 and E(V?) < oo,
» Dropout models. X; = V;Z; with W; ~ Bernoulli(;).
> Discretized models. X; = S_% . ax/(Z € Sx), where Sy, ..., Sk form a partition of R.

Identifiability

Condition 1 (Anchored-frugality). Let Z be Gaussian, and suppose that X is contaminated by
additive measurement errors, such that its covariance matrix is YX = Y4 + ¥V, where ¥V is diagonal.
Among all possible corrections ¥* — diag(n?) € S j_’ ., the graph induced by the resulting covariance
matrix ¥4 exhibits the sparsest structure. Here, Sﬂ . 1s the set of d x d positive definite matrices.
Condition 2 (Geometry-faithfulness). Assume that the latent covariance matrix ¥4 can be
recovered from the known moment relationships between X and Z. The geometry-faithfulness requires
that the d-separation relationships between nodes perfectly encode the orthogonal relationships among

the latent random vector Z, that is,

i and j are d-separated by aset S <= Z; — Y%(X%s) ' Zs and Zi — Zfs(zgs)_123 are uncorrelated.

e Anchored-frugality 1s deeply aligned with Occam’s razor: among all candidate structures obtained
after correcting for variability, the simplest one reveals the true relationships.

e Geometry-faithfulness replaces the conditional independence relationships in the standard
faithfulness by linear orthogonality.

e Under linear SEMs, both conditions are valid except for a set of Lebesgue measure zero.

Theorem 1 (Identifiability). Under Condition 1 or 2, the latent graph is identifiable up to its MEC.

Real-World Application: Galaxy Brightness Measurements
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(a) True DAG (b) Estimated MEC
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