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Main contributions and outline

Main contributions

* Establish an identifiability of distribution-free anchored linear SEMs based on the
geometry-faithfulness assumption.

® Propose a consistent algorithm to discover a latent structure in the presence of
measurement error.

® Provide various numerical experiments and analysis of real galaxy data.
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® Preliminaries

Numerical experiments

e |dentifiability for distribution-free
anchored linear SEMs

Real data analysis

Conclusion
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Introduction



Introduction

¢ |dentifiability of directed acyclic graphical models (DAG) is usually achieved by posing
additional assumptions. For example,

> Causal minimality: True graph is a minimal structure that is Markov to its
distribution.

> Faithfulness: Conditional independence implies d-separation.
> Distributional constraints: Gaussian errors with equal variance (Peters and

Biihimann, 2014), non-Gaussian errors (Shimizu et al., 2006), etc.

® The aforementioned identifiability results work under causal sufficiency regime,
excluding the presence of latent variables.

® However, in many real-world setting, observed variables are imperfect measures of
corresponding true variables.
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Motivating example
e
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Figure 1: Anchored DAG between the latent variables X and the observed variables Z.

® Figure 1 visualizes the relationship between the latent variables X and the observed
variables Z.

® One can observe that X; and X3 are d-separated(blocked) by X5, while the statement
becomes false if we replace X to Z.
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Previous research

Latent structure

Contamination

Distributional constraints

Halpern etal., 2015  P(X) = [; P(X; | XPa(j)) Zi = fi( X)) X,Z are binary

Zhang et al., 2017 X =BX+¢€ Z=X+V e, ¥ are Gaussian
Zhang et al., 2018 X=BX+e€ Z=X+V € is non-Gaussian
Sacedietl.-£02) X=are 4 =5 Known :Zn?::tsfeifa:ionship
Liu et al., 2022 P(X) = T1; P(X; | XPa(j)) Zi = fi(X)) Likelihood is given
Ours X=BX+e€ Zi = (X)) Known moment relationship
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Preliminaries



Directed acyclic graph
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Figure 2: 5-node DAG example.

ADAG G = (V, E) consists of a set of nodes V = {1, ..., p} and a set of directed edges
E c V x V with no directed cycles. Its skeleton is an undirected graph obtained by
removing directions in the edges.

A set of parents of node k, denoted by Pa(k), consists of all nodes j such that
(k) € E.

If there is a directed path j — --- — k, then k is a descendant of j, and j is called an
ancestor of k.

* Anode k is a collider if there exists a triple (j, k, £) such that j — k « ¢, and we say
such triple generates a v-structure.
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D-separation and d-connection
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Figure 3: 5-node DAG example.

® Two nodes j and k in DAG G are d-connected by a node set S c V if there exists a
path  between j and k such that for every node ¢ on the path £

1. if ¢ is a collider, either ¢ or its descendant is in S,
2. otherwise is notin S.

e [fjand k are not d-connected by S, we say j and k are d-separated by S.
> 1 and 5 are d-separated by 0, {2}, {4}, {2, 4}.

> 1 and 5 are d-connected by {3}.
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Markov equivalence class
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Figure 4: Markov equivalence class of G (G2 and G3) and its CPDAG.

* A Markov equivalence class (MEC) is a set of DAGs that encode the same set of
d-separations.

® |t is known that all DAGs in the MEC have the same skeleton and the same
v-structures.

* A complete partially directed acyclic graph (CPDAG) is a unique representation of
MEC.
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Linear SEM

® The joint distribution generated by a DAG model (G, P) can be factorized as follows:
P
P(X) = P(Xi,... Xo) = [ | P(X | Xpay,) (1)
j=1

* Alinear SEM is a special DAG model of (1) where the joint distribution of a linear SEM is defined
by the following linear equations: For all j € V,

Xi= > PgX+e, )

kePa(j)

where (¢);ev are independent, but possibly not identical errors with mean 0 and variance (o- ),EV

® The linear SEM in (2) can be restated as a matrix form:
X =BX+e. (3)

* We denote £L(G, B, F) as the linear SEM in (3) where B is the edge weight matrix, G is the
underlying true DAG, and € ~ F
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Anchored linear SEM

* An anchored DAG model considers a DAG model with latent variables.

® |n our framework, we consider an anchored linear SEM, special case of an anchored
DAG model, as follows: For all j € V,

Z=f(X;) and X~ L(G B, (0,%.)), (4)

where ¥, = diag(o-f, ...,a-f,), and f; : R — R can be linear, non-linear, or even
non-deterministic function.

> (Additive measurement error model)  fi(X;) = X; + y;, where y; ~ (0,77).
> (Dropout model)  f;(Xj) = Xjy;, where y; ~ Bernoulli(p).

> (Poisson transformation)  f;(X;) = Poisson(|X]|).
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Identifiability for distribution-free
anchored linear SEMs




Geometry-faithfulness

ﬁ13
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® To provide an intuition, consider a 3-node fully connected linear SEM:

Xy =€, Xo=ppXi+e, Xs=pBiX+psXe+ e,
where € ~ (0,1) forall j € {1,2,3}.

® Then, the inverse covariance matrix is
144, +,3$3 —B12 + Biafes P13
1= - 1+ 8%, —Ba2s |-
- - 1

e Observe that X; and X; are d-separated by X iff [~ ~"]13 = 0. In addition, X, and X; are
d-separated by X iff [ ~"],3 = 0.
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Geometry-faithfulness

Assumption 1. Geometry-faithfulness |

Consider a linear SEM £L(G, B, (0, X)) that generates P(X), i.e., X ~ £(G, B, (0, X.)). Then,
for any pair of nodes j, k € V, and for any subset S c V' \ {j, k},

jand k are d-separated by Sin G < pjxs o« [(ZL0) ']k =0,
where ¥ = (I, - B)'E. (I, - B)™", L = SU{j,k}, and pjx s is the partial correlation

coefficient of Xj and Xy given Xs.

® Geometry-faithfulness ensures that partial correlations directly reflect d-separations and
connections within the graph.

® Under the geometry-faithfulness assumption, j and k are d-separated by S if and only if
the residuals obtained by projecting X; and Xk onto Xs are orthogonal.
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Identifiability for distribution-free anchored linear SEMs

Theorem 1. Identifiability for distribution-free anchored linear SEMs
Consider a distribution-free anchored linear SEM with £ (G, B, (0, ~.)). Then, model is
identifiable up to the MEC if the followings are satisfied.

(A1). The latent distribution P(X) is geometry-faithful to G.

(A2). The observed random variables satisfy the following condition: For all j € V,

Zi WAZy, .. Zp, Xy, o, X \Z, X} | X

(A3). Forall j,k € V, there exists a finite-dimensional vector ¢; of monomials in Z; and a
finite-dimensional vector 6 of monomials in Z; and Z, such that their means can be
mapped to the moments of the latent variables by continuously differentiable functions
gj and gy, such that E[Xj] = g;(E[5]]), E[X?] = g;(E[6;]), and E[X;Xk] = gi (E[65]), and
their covariance satisfies Cov(6;, djx) < co.
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Algorithm




Algorithm 1. CPDAG learning algorithm for distribution-free anchored linear
SEMs

Input: n i.i.d. observations from an anchored linear SEM, Z':", transformation 7~ and g such that
Cov(X) = 7 (E[g(Z)]), and significance level a.

Output: Complete Partial DAG (CPDAG), ch.

1.

Estimate the mean of g(Z) from Z'".

2. Estimate the covariance matrix 3 for latent variables using 7~ and g.
&,
4

Estimate the partial correlations of X using 5.

. Estimate a CPDAG using a constraint-based algorithm (e.g., the PC algorithm) by conducting a consistent

partial correlation test with .

Return: Estimated CPDAG, Gep-

® Under appropriate conditions, Algorithm 1 is guaranteed to be consistent.
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Assumption 2. Strong geometry-faithfulness ‘

Consider an anchored linear SEM (4). For any j,k € Vand S c V' \ {j, k}, if j and k are d-separated by
S, then the corresponding partial correlation is zero; otherwise, it is bounded below by a constant.
Precisely, there exists a constant p,;, > 0 such that

0 < Pmin < inf {|pj,k,s| : jand k are d-connected by S}.

Theorem 2. Consistency ‘
Consider an anchored linear SEM (4) with the true CPDAG G,. Suppose that the strong
geometry-faithfulness assumption specified in Assumption 2 and Assumptions (A2)-(A3) in Theorem 1
are satisfied. Additionally, suppose that the sequence of significance level {«a, : n € N} satisfies

2(1 - (0.50min V=P — 1)) < @y < 1 for all n € N where ®(-) denotes the CDF of N(0, 1). Then,
Algorithm 1 is consistent, i.e.,

G — Gop as N — oo,

where G, is the estimated CPDAG by Algorithm 1.
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Numerical experiments




Experiment setting

® The number of its parents was uniformly selected from the set {1, ..., din}.

® Bj in Equation (2) were randomly chosen to fall within the intervals
(-0.75,-0.25) U (0.25,0.75).

® Models were constructed with various noise distributions: (i) Gaussian, (i) Uniform, (iii)
Student’s t, and (iv) Discrete uniform.

® For the contamination process, (i) dropout models, (ii) additive measurement error
models were considered.

> In dropout models, the dropout probability was set to y = 0.1.

> In additive measurement error models, the variance of the measurement error was
set at 72 = 0.25.

* Finally, the significance level was set at a, = 1 — ®(n'/%/2), respecting the theoretical

result from Theorem 2. 16/22



Dropout models

Recovery Rate
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Additive measurement error models
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Real data analysis




Data description

@ @

BbMAG @ BbMAG

(a) True DAG (b) True CPDAG

Figure 7: The true DAG and CPDAG of variables within galaxy data.

® The data (p = 6, n = 3462) comprises galaxy brightness measurements, which also
includes measurement errors for each variable.
> Rmag (0.0069), mumax (0), ApbDRmag (0), Mcz (0.0038), BbMAG (1.5233) and
rsMAG (1.6508). 19/22
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(a) True CPDAG (b) Proposed (c) PC (d) GES

Figure 8: CPDAGs estimated by the proposed, PC, and GES algorithms.

® The proposed algorithm successfully detects all true edges, while falsely detects an
undirected edge (BbMAG, rsMAG).

® Contrary to the proposed method, the PC and GES algorithms fail to recover the true
edges.
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Discussion




® |ntroduce the geometry-faithfulness assumption.
® Present a consistent learning algorithm based on the PC-algorithm.
* Known moment relationships between observed and latent variables is required.

® Develop high-dimensional models and DAG recovery algorithms.
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