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Main contributions and outline

Main contributions
• Establish an identifiability of distribution-free anchored linear SEMs based on the

geometry-faithfulness assumption.

• Propose a consistent algorithm to discover a latent structure in the presence of
measurement error.

• Provide various numerical experiments and analysis of real galaxy data.

• Introduction

• Preliminaries

• Identifiability for distribution-free
anchored linear SEMs

• Algorithm

• Numerical experiments

• Real data analysis

• Conclusion
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Introduction



Introduction

• Identifiability of directed acyclic graphical models (DAG) is usually achieved by posing
additional assumptions. For example,

▷ Causal minimality: True graph is a minimal structure that is Markov to its
distribution.

▷ Faithfulness: Conditional independence implies d-separation.

▷ Distributional constraints: Gaussian errors with equal variance (Peters and
Bühlmann, 2014), non-Gaussian errors (Shimizu et al., 2006), etc.

• The aforementioned identifiability results work under causal sufficiency regime,
excluding the presence of latent variables.

• However, in many real-world setting, observed variables are imperfect measures of
corresponding true variables.
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Motivating example

X1 X2 X3

Z1 Z2 Z3

f1 f2 f3

Figure 1: Anchored DAG between the latent variables X and the observed variables Z .

• Figure 1 visualizes the relationship between the latent variables X and the observed
variables Z .

• One can observe that X1 and X3 are d-separated(blocked) by X2, while the statement
becomes false if we replace X to Z .
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Previous research

Latent structure Contamination Distributional constraints

Halpern et al., 2015 P(X) =
∏

j P(Xj | XPa(j)) Zj = fj(Xj) X ,Z are binary

Zhang et al., 2017 X = BX + ϵ Z = X +Ψ ϵ,Ψ are Gaussian

Zhang et al., 2018 X = BX + ϵ Z = X +Ψ ϵ is non-Gaussian

Saeed et al., 2020 X = BX + ϵ Zj = fj(Xj)
ϵ is Gaussian

Known moment relationship

Liu et al., 2022 P(X) =
∏

j P(Xj | XPa(j)) Zj = fj(Xj) Likelihood is given

Ours X = BX + ϵ Zj = fj(Xj) Known moment relationship
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Directed acyclic graph

1 2 3 4 5

Figure 2: 5-node DAG example.

• A DAG G = (V ,E) consists of a set of nodes V = {1, ..., p} and a set of directed edges
E ⊂ V × V with no directed cycles. Its skeleton is an undirected graph obtained by
removing directions in the edges.

• A set of parents of node k , denoted by Pa(k), consists of all nodes j such that
(j, k) ∈ E.

• If there is a directed path j → · · · → k , then k is a descendant of j, and j is called an
ancestor of k .

• A node k is a collider if there exists a triple (j, k , ℓ) such that j → k ← ℓ, and we say
such triple generates a v-structure.
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D-separation and d-connection

1 2 3 4 5

Figure 3: 5-node DAG example.

• Two nodes j and k in DAG G are d-connected by a node set S ⊂ V if there exists a
path P between j and k such that for every node ℓ on the path P

1. if ℓ is a collider, either ℓ or its descendant is in S,
2. otherwise ℓ is not in S.

• If j and k are not d-connected by S, we say j and k are d-separated by S.

▷ 1 and 5 are d-separated by ∅, {2}, {4}, {2, 4}.

▷ 1 and 5 are d-connected by {3}.
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Markov equivalence class
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Figure 4: Markov equivalence class of G1 (G2 and G3) and its CPDAG.

• A Markov equivalence class (MEC) is a set of DAGs that encode the same set of
d-separations.

• It is known that all DAGs in the MEC have the same skeleton and the same
v-structures.

• A complete partially directed acyclic graph (CPDAG) is a unique representation of
MEC.
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Linear SEM

• The joint distribution generated by a DAG model (G,P) can be factorized as follows:

P(X) = P(X1, ...,Xp) =

p∏
j=1

P(Xj | XPa(j)). (1)

• A linear SEM is a special DAG model of (1) where the joint distribution of a linear SEM is defined
by the following linear equations: For all j ∈ V ,

Xj =
∑

k∈Pa(j)

βkjXk + ϵj , (2)

where (ϵj)j∈V are independent, but possibly not identical errors with mean 0 and variance (σ2
j )j∈V .

• The linear SEM in (2) can be restated as a matrix form:

X = BX + ϵ. (3)

• We denote L(G,B ,F) as the linear SEM in (3) where B is the edge weight matrix, G is the
underlying true DAG, and ϵ ∼ F .
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Anchored linear SEM

• An anchored DAG model considers a DAG model with latent variables.

• In our framework, we consider an anchored linear SEM, special case of an anchored
DAG model, as follows: For all j ∈ V ,

Zj = fj(Xj) and X ∼ L (G,B , (0,Σϵ)) , (4)

where Σϵ = diag(σ2
1, ..., σ

2
p), and fj : R→ R can be linear, non-linear, or even

non-deterministic function.

▷ (Additive measurement error model) fj(Xj) = Xj + ψj , where ψj ∼ (0, η2
j ).

▷ (Dropout model) fj(Xj) = Xjψj , where ψj ∼ Bernoulli(p).

▷ (Poisson transformation) fj(Xj) = Poisson(|Xj |).
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Identifiability for distribution-free
anchored linear SEMs



Geometry-faithfulness

X1 X2 X3
β12

β13

β23

• To provide an intuition, consider a 3-node fully connected linear SEM:

X1 = ϵ1, X2 = β12X1 + ϵ2, X3 = β13X1 + β23X2 + ϵ3,

where ϵj ∼ (0, 1) for all j ∈ {1, 2, 3}.

• Then, the inverse covariance matrix is

Σ−1 =


1 + β2

12 + β2
13 −β12 + β13β23 −β13

− 1 + β2
23 −β23

− − 1

 .
• Observe that X1 and X3 are d-separated by X2 iff [Σ−1]13 = 0. In addition, X2 and X3 are

d-separated by X1 iff [Σ−1]23 = 0.
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Geometry-faithfulness

Assumption 1. Geometry-faithfulness
Consider a linear SEM L(G,B , (0,Σϵ)) that generates P(X), i.e., X ∼ L(G,B , (0,Σϵ)). Then,
for any pair of nodes j, k ∈ V , and for any subset S ⊂ V \ {j, k },

j and k are d-separated by S in G ⇐⇒ ρj,k ,S ∝ [(ΣL ,L )
−1]j,k = 0,

where Σ = (Ip − B)−1Σϵ(Ip − B)−⊤, L = S ∪ {j, k }, and ρj,k ,S is the partial correlation
coefficient of Xj and Xk given XS .

• Geometry-faithfulness ensures that partial correlations directly reflect d-separations and
connections within the graph.

• Under the geometry-faithfulness assumption, j and k are d-separated by S if and only if
the residuals obtained by projecting Xj and Xk onto XS are orthogonal.
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Identifiability for distribution-free anchored linear SEMs

Theorem 1. Identifiability for distribution-free anchored linear SEMs
Consider a distribution-free anchored linear SEM with L (G,B , (0,Σϵ)). Then, model is
identifiable up to the MEC if the followings are satisfied.

(A1). The latent distribution P(X) is geometry-faithful to G.

(A2). The observed random variables satisfy the following condition: For all j ∈ V ,

Zj ⊥⊥ {Z1, ...,Zp ,X1, ...,Xp} \ {Zj ,Xj} | Xj .

(A3). For all j, k ∈ V , there exists a finite-dimensional vector δj of monomials in Zj and a
finite-dimensional vector δjk of monomials in Zj and Zk , such that their means can be
mapped to the moments of the latent variables by continuously differentiable functions
gjj and gjk , such that E[Xj] = gj(E[δj]), E[X2

j ] = gjj(E[δjj]), and E[XjXk ] = gjk (E[δjk ]), and
their covariance satisfies Cov(δj , δjk ) < ∞.
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Algorithm

Algorithm 1. CPDAG learning algorithm for distribution-free anchored linear
SEMs
Input: n i.i.d. observations from an anchored linear SEM, Z1:n , transformation T and g such that
Cov(X) = T (E[g(Z)]), and significance level α.

Output: Complete Partial DAG (CPDAG), Ĝcp .

1. Estimate the mean of g(Z) from Z1:n .

2. Estimate the covariance matrix Σ̂ for latent variables using T and g.

3. Estimate the partial correlations of X using Σ̂.

4. Estimate a CPDAG using a constraint-based algorithm (e.g., the PC algorithm) by conducting a consistent
partial correlation test with α.

Return: Estimated CPDAG, Ĝcp .

• Under appropriate conditions, Algorithm 1 is guaranteed to be consistent.
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Consistency

Assumption 2. Strong geometry-faithfulness
Consider an anchored linear SEM (4). For any j, k ∈ V and S ⊂ V \ {j, k }, if j and k are d-separated by
S, then the corresponding partial correlation is zero; otherwise, it is bounded below by a constant.
Precisely, there exists a constant ρmin > 0 such that

0 < ρmin ≤ inf
{
|ρj,k ,S | : j and k are d-connected by S

}
.

Theorem 2. Consistency
Consider an anchored linear SEM (4) with the true CPDAG Gcp . Suppose that the strong
geometry-faithfulness assumption specified in Assumption 2 and Assumptions (A2)-(A3) in Theorem 1
are satisfied. Additionally, suppose that the sequence of significance level {αn : n ∈ N} satisfies
2
(
1 −Φ

(
0.5ρmin

√
n − p − 1

))
< αn < 1 for all n ∈ N where Φ(·) denotes the CDF of N(0, 1). Then,

Algorithm 1 is consistent, i.e.,

Ĝcp → Gcp as n → ∞,

where Ĝcp is the estimated CPDAG by Algorithm 1.
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Numerical experiments



Experiment setting

• The number of its parents was uniformly selected from the set {1, ..., din}.

• βjk in Equation (2) were randomly chosen to fall within the intervals
(−0.75,−0.25) ∪ (0.25, 0.75).

• Models were constructed with various noise distributions: (i) Gaussian, (ii) Uniform, (iii)
Student’s t, and (iv) Discrete uniform.

• For the contamination process, (i) dropout models, (ii) additive measurement error
models were considered.

▷ In dropout models, the dropout probability was set to γ = 0.1.

▷ In additive measurement error models, the variance of the measurement error was
set at η2 = 0.25.

• Finally, the significance level was set at αn = 1 − Φ(n1/5/2), respecting the theoretical
result from Theorem 2.
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Dropout models

(a) p = 5, din = 2 (b) p = 5, din = 4

(c) p = 10, din = 2 (d) p = 10, din = 4
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Additive measurement error models

(a) p = 5, din = 2 (b) p = 5, din = 4

(c) p = 10, din = 2 (d) p = 10, din = 4
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Real data analysis



Data description

Rmag

ApDRmagmumax

Mcz

BbMAG rsMAG

(a) True DAG

Rmag

ApDRmagmumax

Mcz

BbMAG rsMAG

(b) True CPDAG

Figure 7: The true DAG and CPDAG of variables within galaxy data.

• The data (p = 6, n = 3462) comprises galaxy brightness measurements, which also
includes measurement errors for each variable.

▷ Rmag (0.0069), mumax (0), ApDRmag (0), Mcz (0.0038), BbMAG (1.5233) and
rsMAG (1.6508). 19/22



Results

Rmag

ApDRmagmumax

Mcz

BbMAG rsMAG

(a) True CPDAG

Rmag

ApDRmagmumax

Mcz

BbMAG rsMAG

(b) Proposed

Rmag
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Mcz
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(c) PC

Rmag

ApDRmagmumax

Mcz

BbMAG rsMAG

(d) GES

Figure 8: CPDAGs estimated by the proposed, PC, and GES algorithms.

• The proposed algorithm successfully detects all true edges, while falsely detects an
undirected edge (BbMAG, rsMAG).

• Contrary to the proposed method, the PC and GES algorithms fail to recover the true
edges.
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Discussion

• Introduce the geometry-faithfulness assumption.

• Present a consistent learning algorithm based on the PC-algorithm.

• Known moment relationships between observed and latent variables is required.

• Develop high-dimensional models and DAG recovery algorithms.
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