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Main contributions and outline

Main contributions
• Discover an identifiability condition for Gaussian linear SEMs with

post-randomized additive measurement error.

• Develop a consistent algorithm that captures an underlying true CPDAG.

Outline

• Motivation

• Anchored DAG model

• Model identifiability

• Algorithm

• Numerical experiments

• Discussion
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Directed Acyclic Graphical (DAG) model

• A DAG model is a useful tool to figure out relationships between variables.

• A DAG model is identifiable up to its MEC under the faithfulness assumption.

• Suppose that there are three variables of family gene information, X3 = f (X1,X2)
(functional relationship):

X1: Father X2: Mother

X3: Child

X1: Ancestor

X2: Father

X3: Child

• X1 ⊥⊥ X2, X1 ⊥̸⊥X2 | X3,

• X1 ⊥̸⊥ X3, X1 ⊥̸⊥X3 | X2,

• X2 ⊥̸⊥ X3, X2 ⊥̸⊥X3 | X1.

• X1 ⊥̸⊥ X2, X1 ⊥̸⊥X2 | X3,

• X1 ⊥̸⊥ X3, X1 ⊥⊥ X3 | X2,

• X2 ⊥̸⊥ X3, X2 ⊥̸⊥X3 | X1.
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Anchored DAG model

• How to solve the problem of causal discovery with measurement errors?

• Estimating causal relationships directly from corrupted data may lead to
incorrect inference.

Anchored graph

X1 X2 X3

Z1 Z2 Z3

• X: Latent variables

• Z: Observed variables

• X1 ⊥̸⊥X2, X1 ⊥̸⊥X3, X2 ⊥̸⊥X3,

X1 ⊥̸⊥X2 | X3, X1 ⊥⊥ X3 | X2, X2 ⊥̸⊥X3 | X1.

• Z1 ⊥̸⊥Z2, Z1 ⊥̸⊥Z3, Z2 ⊥̸⊥Z3,

Z1 ⊥̸⊥Z2 | Z3, Z1 ⊥̸⊥ Z3 | Z2, Z2 ⊥̸⊥Z3 | Z1.
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Frugality property: Graph theory

Frugality property using graph theory

Consider a p-variate anchored DAG.

• If a pair of latent nodes is d-connected, the corresponding pair of anchored
nodes is also d-connected by any set of anchored nodes.

X1

X2

X3

X4

Z1

Z2

Z3

Z4

• An active path between X1 and
X4 is blocked by X2 or X4.

• An active path between Z1 and
Z4 cannot be blocked by Z2 or Z3.
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Frugality property: Probability theory

Theorem: Frugality property

Consider a DAG model (G,P(X)) and its corresponding anchored DAG model
(Gan,P(X,X′)), where X is a vector of latent variables and X′ = F(X) is any function
of latent variables in which X′j = Fj(Xj) for all j ∈ V. Suppose that P(X,X′) is faithful to
Gan. Then, for any P(X,X′) and G′ ∈ Gfr(P(X′)),

• the skeleton of G′ is a supergraph of the skeleton of G.

• |G| = |G′| if and only ifM(G) =M(G′).

• In short, the true graph is always sparser than the corresponding corrupted
graph in terms of d-connections.
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Anchored Gaussian DAG model

• Anchored Gaussian DAG model: For j ∈ {1, 2, ..., p},

Zj = fj(Xj), where Xj ∼ N
(
0, σ2

j

)
.

• To establish its identifiability, it is assumed for each observed variable to be
▷ a linear function of the corresponding latent variable and a measurement error with

known variance (Zhang et al., 2017)

Zj = Xj + Ej, where Ej ∼ N
(
0, s2

j

)
.

▷ any function of the latent variable with known moment relationships between the
latent variables and the observed variables (Saeed et al., 2020).

Zj = fj(Xj), where fj is known possibly stochastic function.
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Post-randomized additive measurement error model

Figure 1: Three types of anchored models: an anchored DAG model (left), an additive measurement
error model (middle), and a post-randomized additive measurement error model (right).

• Post-randomized additive measurement error model: For j ∈ {1, 2, ..., p},

Zj = fj(Xj + Ej), where Ej ∼ N
(
0, s2

j

)
and fj is known possibly stochastic function.

• We allow the variance of Ej to be unknown. 8/13



Examples of post-randomized additive measurement error model

• Gaussian additive noise models: For j ∈ {1, 2, ..., p},

Zj = fj(Xj + Ej) = Xj + Ej + Ẽj, where Ej ∼ N(0, s2
j ) and Ẽj ∼ N(0, η2

j ).

▷ η2
j should be known, whereas we don’t need the information of s2

j .

• Dropout models: For j ∈ {1, 2, ..., p},

Zj = fj(Xj + Ej) =

Xj + Ej with probability γj,

0 with probability 1 − γj.
, where Ej ∼ N(0, s2

j ).

▷ E(Xj) = E(Zj)/γj, E(X2
j ) = E(Z2

j )/γj − η
2
j , and E(XjXk) = E(ZjZk)/γjγk.

▷ γj should be known, but s2
j remains unknown.
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Main result

Identifiability
the post-randomized additive measurement error models with unknown
measurement error variance are identifiable up to MEC if

• the true graph meets the faithfulness assumption for its probability distribution,

• it is known how the covariance matrix of the latent variables with additive
measurement error Cov(Y) is derived from the observed distribution, such that
Cov(Y) = T (Cov(Z)), and

• the frugality assumption is satisfied.
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Anchored PC algorithm

PC algorithm for learning anchored Gaussian DAG models
• Input: Covariance matrix for observed variables Cov(Z), and transformation T such that

Cov(X) + ηIp = T (Cov(Z))

• Output: Complete Partial DAG (CPDAG), Ĝcp

Step 1: Compute the covariance matrix for latent variables with measurement errors
Cov(Y) = T (Cov(Z))

Step 2: Set EtaSet ⊂ (Λmin(Cov(Y)), 0] for measurement error variances

For η′ ∈ EtaSet

Step 3-1: Calculate the partial correlations of X from Ση′ = Cov(Y) − η′Ip

Step 3-2: Find the C.I. relations

Step 3-3: Estimate a CPDAG, Ĝη′ , using the PC algorithm based on the C.I. relations

Determine the most frugal Ĝη̂ as Ĝcp where η̂ = arg minη′ |Ĝη′ |
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Numerical experiments

• 100 realizations for Gaussian additive measurement error models were
randomly generated.

• True graphs were generated at random while respecting the pre-determined
maximum indegree din ∈ {1, 2, 3}.

• The set of non-zero parameters βj,k ∈ R was uniformly generated within the
range βj,k ∈ (−0.8,−0.2) ∪ (0.2, 0.8).

• Noise variances σ2
j were randomly chosen within the range [0.5, 2], and we set

the measurement error variance η2 to 0.25.

• We compared Anchored-SP and Frugal-PC algorithms to state-of-the-art
algorithms: ACI, PC, and MMHC.
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Numerical experiments

(a) p = 5, din = 1 (b) p = 5, din = 2 (c) p = 5, din = 3

(d) p = 10, din = 1 (e) p = 10, din = 2 (f) p = 10, din = 3
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Summary and future works

• Considered model: Anchored Gaussian DAG models with post-randomized additive
measurement error with unknown variance.

• Contributions:

• Propose the frugality assumption aiding in true graph structure identification under
unknown measurement error variance.

• Develop a constraint-based structure learning algorithm, validated for consistency
and effectiveness through extensive numerical experiments.

• Future Works:

• Relax the Gaussianity assumption.

• Recover a DAG rather than MEC.
14/13



Reference

• Anandkumar, A., Hsu, D., Javanmard, A., & Kakade, S. (2013). Learning linear Bayesian networks with latent
variables. International Conference on Machine Learning (pp. 249-257). PMLR.

• Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P., Jerby-Arnon, L., ... & Regev, A. (2016). Perturb-Seq:
dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell, 167(7),
1853-1866.

• Halpern, Y., Horng, S., & Sontag, D. (2015). Anchored discrete factor analysis. arXiv preprint
arXiv:1511.03299.

• Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal
of multivariate analysis, 88(2), 365-411.

• Park, G. (2020). Identifiability of additive noise models using conditional variances. The Journal of Machine
Learning Research, 21(1), 2896-2929.

• Saeed, B., Belyaeva, A., Wang, Y., & Uhler, C. (2020). Anchored causal inference in the presence of
measurement error. Conference on uncertainty in artificial intelligence (pp. 619-628). PMLR.

• Zhang, K., Gong, M., Ramsey, J., Batmanghelich, K., Spirtes, P., & Glymour, C. (2017). Causal discovery in
the presence of measurement error: Identifiability conditions. arXiv preprint arXiv:1706.03768.

15/13



Appendix



Sparest permutation algorithm

• Consider all possible DAGs that satisfy the Markov condition and choose the
one with the fewest edges.

• This approach becomes impractical as the number of potential DAGs increases
super-exponentially with the number of nodes.

• To address this issue, computationally feasible algorithms, such as the PC
algorithm, must be employed.

• However, adopting such algorithms requires certain trade-offs, including
additional conditions for their application.
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